In the world of racecars, semi-automatic transmissions, such as the sequential manual gearbox (or SMG), have been a staple for years. But in the world of production vehicles, it's a relatively new technology, one that is being defined by a very specific design known as the dual-clutch, or direct-shift gearbox.
Comparison between the working mechanisms of A conventional manual transmission and DCT:
A dual-clutch transmission offers the function of two manual gearboxes in one. To understand what this means, it's helpful to review how a conventional manual gearbox works. When a driver wants to change from one gear to another in a standard stick-shift car, he first presses down the clutch pedal. This operates a single clutch, which disconnects the engine from the gearbox and interrupts power flow to the transmission. Then the driver uses the stick shift to select a new gear, a process that involves moving a toothed collar from one gear wheel to another gear wheel of a different size. Devices called synchronizers match the gears before they are engaged to prevent grinding. Once the new gear is engaged, the driver releases the clutch pedal, which re-connects the engine to the gearbox and transmits power to the wheels.
So, in a conventional manual transmission, there is not a continuous flow of power from the engine to the wheels. Instead, power delivery changes from on to off to on during gearshift, causing a phenomenon known as "shift shock" or "torque interrupt." For an unskilled driver, this can result in passengers being thrown forward and back again as gears are changed. The graphical layout of the DCT is shown below.
(from above figure)A dual-clutch gearbox, by contrast, uses two clutches, but has no clutch pedal. Sophisticated electronics and hydraulics control the clutches, just as they do in a standard automatic transmission. In a DCT, however, the clutches operate independently. One clutch controls the odd gears (first, third, fifth and reverse), while the other controls the even gears (second, fourth and sixth). Using this arrangement, gears can be changed without interrupting the power flow from the engine to the transmission.
Sequentially, it works like this:
A two-part transmission shaft is at the heart of a DCT. Unlike a conventional manual gearbox, which houses all of its gears on a single input shaft, the DCT splits up odd and even gears on two input shafts. The outer shaft is hollowed out, making room for an inner shaft, which is nested inside. The outer hollow shaft feeds second and fourth gears, while the inner shaft feeds first, third and fifth. The diagram below shows this arrangement for a typical five-speed DCT. Notice that one clutch controls second and fourth gears, while another, independent clutch controls first, third and fifth gears. That's the trick that allows lightning-fast gear changes and keeps power delivery constant. A standard manual transmission can't do this because it must use one clutchfor all odd and even gears.
Torque converter or Multiplate clutch:
Because a dual-clutch transmission is similar to an automatic, you might think that it requires a torque converter, which is how an automatic transfers engine torque from the engine to the transmission. DCTs, however, don't require torque converters. Instead, DCTs currently on the market use wet multi-plate clutches. A "wet" clutch is one that bathes the clutch components in lubricating fluid to reduce friction and limit the production of heat. Several manufacturers are developing DCTs that use dry clutches, like those usually associated with manual transmissions, but all production vehicles equipped with DCTs today use the wet version.
Like torque converters, wet multi-plate clutches use hydraulic pressure to drive the gears. The fluid does its work inside the clutch piston, seen in the diagram above. When the clutch is engaged, hydraulic pressure inside the piston forces a set of coil springs part, which pushes a series of stacked clutch plates and friction discs against a fixed pressure plate. The friction discs have internal teeth that are sized and shaped to mesh with splines on the clutch drum. In turn, the drum is connected to the gearset that will receive the transfer force. Audi's dual-clutch transmission has both a small coil spring and a large diaphragm spring in its wet multi-plate clutches.
Engagement mechanisms for odd and even gears:
To disengage the clutch, fluid pressure inside the piston is reduced. This allows the piston springs to relax, which eases pressure on the clutch pack and pressure plate.
it's really nice blog We are manufacturing Starter Motor Shafts, Precision Spur Gears, Precision Helical Gears, Precision Worm Gears, Precision Ground Gears DIN 4 CLASS
ReplyDelete